
 Shopware 5 Designer’s Guide

 Shopware AG

 MIT License Copyright (c) shopware AG and individual contributors. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Shopware 5 Designer’s Guide

Introduction

This guide will introduce you to the new features and additions to the new Shopware 5 default “Responsive” theme, which is a cross browser compatible, retina ready, responsive HTML5 / CSS3 theme with touch support. It features a clean and unique design and many new features, such as a powerful backend module, new product displays and infinite scrolling. We’ve optimized the Responsive theme for the following devices:

	Smartphones in portrait and landscape modes

	Tablets in portrait and landscape modes

	Nettops, Notebooks and Desktop PCs

[image: Responsive theme]
Responsive theme

Table of contents

	Feature overview

	Compatibility note

	Comparison with the shopware 4 template

	Device examples

	Theme.php

	Less integration

	Customizing your theme

	The bare theme

	The responsive theme

	Third-party components using bower

Feature overview

	Theme inheritance system is now totally transparent and can easily be modified

	Theme specific registration of Smarty Plugins

	Snippets are now be directly included in the theme directory

	Fully restructured HTML5 structure with backward compatibility in mind

	Mobile first approach

	HTML5 form validation

	Rich snippets based on schema.org

	Massive increase of Smarty blocks in the theme

	Retina ready adaptive images

	State of the art implementation using the HTML5 picture element

	Automatically creation of high dpi images for products and emotion worlds using the Media Manager module

	Fully configurable using the Theme Manager

	Easily change the color of the complete theme

	9 pre-configured color sets

	Changing your logo is as easy as selecting an image in the Media Manager module

	Built-in LESS compiler

	CSS source maps for easier debugging

	Component based styling

	Over 20 provided mixins

	All variables are configurable using the Theme Manager module in the Shopware backend

	Built-in Javascript compressor

	Concatenates all provided files to reduce the amount of HTTP requests

	Strips all whitespaces and inline comments for a smaller footprint

	Responsive Javascript State Manager and own jQuery plugin system

	Runs your jQuery plugin only for a specific breakpoint

	Simplifies the development of jQuery plugins

	Automatically unbinding of event listeners

	Destroys automatically jQuery plugins which aren’t used in the certain viewport

	Global event system for easier communication between jQuery plugins

	Fully customizable off-canvas panel

	Infinite scrolling mode for the product listings

	State of the art technologies

	bower as the package manager for third-party components

	Feature detection using Modernizr

	Pure CSS responsive grid system using PocketGrid

	jQuery 2.1.11 included

	CSS3 Animations with a jQuery fallback using jQuery Transit

	Scalable icon set with 295 pre defined icons

	Ajaxified the emotion worlds, note functionality and compare function

Compatibility note

We built the theme with maximal backward compatibility in mind and are proud to announce that all Smarty blocks which were be available in the “Emotion” template can also be found in the new “Responsive” theme.

As part of the restructuring of the theme, we updated the list of browsers which are officially supported:

	Chrome version 34 or above

	Firefox version 29 or above

	Safari, Mac OS X only. Support for the windows version has been discontinued

	Opera version 15 with Blink engine or above

	Internet Explorer version 9 or above

Please keep in mind that older browsers don’t support all available HTML5 and CSS3 features.

Comparison with the Shopware 4 template

	
	Shopware 4
	Shopware 5

	Total Smarty blocks
	918
	1831

	Javascript file size in total
	365KB
	295KB

	CSS file size in total
	325.9KB
	279KB

	HTTP requests on home page*
	32
	11

*Bare installation without any demo data.

Device examples

Mobile view

[image: iPhone Portrait]
iPhone Portrait

[image: iPhone Landscape]
iPhone Landscape

Tablet view

[image: iPad Portrait]
iPad Portrait

[image: iPad Landscape]
iPad Landscape

Theme.php

The Theme.php is the base file of each and every theme. It provides the basic information about the author, the license and a short description for the Theme Manager. Additionally, it provides access to the following features:

	LESS compiler

	Javascript compiler

	Adding customizable options for the theme user

	Adding configuration sets

The following example shows a demo Theme.php file for a theme named “Example”:

<?php
namespace Shopware\Themes\Example;

use Doctrine\Common\Collections\ArrayCollection;
use Shopware\Components\Form as Form;
use Shopware\Components\Theme\ConfigSet;

class Theme extends \Shopware\Components\Theme
{
 /** @var string Defines the parent theme */
 protected $extend = 'Bare';

 /** @var string Defines the human readable name */
 protected $name = 'Example';

 /** @var string Description of the theme */
 protected $description = 'An awesome Shopware theme';

 /** @var string The author of the theme */
 protected $author = 'shopware AG';

 /** @var string License of the theme */
 protected $license = 'MIT';
}

Adding javascript files to your theme

Working with compressors isn’t always as easy as adding the files to your HTML structure using script tags. The built-in javascript compressor is as easy as this and perfectly suited your workflow as a web developer.

Simply place your javascript files in the frontend/_public folder and add their paths to the $javascript array in your Theme.php, and you’re good to go.

/** @var array Defines the files which should be compiled by the javascript compressor */
protected $javascript = array(
 'src/js/jquery.my-plugin.js'
);

Adding LESS files to your theme

The built-in LESS compiler searches for a file named all.less in the frontend/_public/src/less directory. You just have to create the necessary directory structure and your LESS code will automatically converted to CSS on the fly.

I don’t know LESS, what can I do?

You can add a $css array to your Theme.php file, similar to the $javascript array, with the paths of your CSS files:

/** @var array Defines the files which should be compiled by the javascript compressor */
protected $css = array(
 'src/css/my-styles.css'
);

What should I know about the LESS integration?

Less is a CSS pre-processor, meaning that it extends the CSS language, adding features that allow variables, mixins, functions and many other techniques that allow you to make CSS that is more maintainable, customizable and extendable.

Responsive adjustment with LESS

We’re using relative measuring units, like em or rem throughout the code base. Working with them can be at times troublesome. To simplify the process, we include a LESS mixin called unitize.

It provides the ability to create rem values with a pixel based fallback for older browser.

The following example shows how to use the mixin using a 12px font-size:

p {
 .unitize(font-size, 12);
}

Relative measuring units are always based on the font-size of the html element. In almost every case, the default browsers font-size is 16px and that’s why the mixin uses 16 as default base value for the rem calculation. If you want to use a different base value you can simply add it as a third parameter.

Customizing your theme

It’s possible to add custom configuration options to your theme. Using this method, the user can fully customize the theme without having to edit any CSS files.

Creating configuration elements

To create configuration elements it’s necessary to add a createConfig() method to your Theme.php. The method specifies the elements you need for the configuration form. The first parameter is the container element of type Shopware\Components\Form\Container\TabContainer where you can add additional fields as well as other container elements.

/**
 * @param Form\Container\TabContainer $container
 */
public function createConfig(Form\Container\TabContainer $container)
{

 $tab = $this->createTab(
 'responsive_colors_tab',
 'Responsive colors'
);
 $container->addTab($tab);
}

Container elements

The $container also accepts other container elements like a tab or a fieldset.

/**
 * @param Form\Container\TabContainer $container
 */
public function createConfig(Form\Container\TabContainer $container)
{
 $fieldset = $this->createFieldSet(
 'responsive_fieldset',
 'My responsive settings'
);
 $tab = $this->createTab(
 'responsive_colors_tab',
 'Responsive colors'
);
 $tab->addElement($fieldset)

 $container->addTab($tab);
}

Adding elements to the configuration container

Now you can add the necessary elements to the $container. The following elements are available:

	createTextField

	createNumberField

	createCheckboxField

	createDateField

	createEmField

	createColorPickerField

	createMediaField

	createPercentField

	createPixelField

	createSelectField

	createTextAreaField

All elements have a similar syntax:

$this->createTextField([unique name], [label], [default value]);

In the following example we created a textfield with the label Basic font size and the name basic_font_size. The name of any field is mandatory and has to be unique. It will be used to assign the value of the field to the storefront.

/**
 * @param Form\Container\TabContainer $container
 */
public function createConfig(Form\Container\TabContainer $container)
{
 // Create the fieldset which is the container of our field
 $fieldset = $this->createFieldSet(
 'responsive_fieldset',
 'My responsive settings'
);

 // Create the textfield
 $textField = $this->createTextField(
 'basic_font_size',
 'Basic font size',
 '16px'
);

 $fieldset->addElement($textField);

 // Create the tab which will be named "Responsive settings"
 $tab = $this->createTab(
 'responsive_colors_tab',
 'Responsive settings'
);

 // ...add the fieldset to the tab
 $tab->addElement($fieldset)

 // ...last but not least add the tab to the container, which is a tab panel.
 $container->addTab($tab);
}

After saving the Theme.php, you will be able to get the value of the field in the storefront like so:

{$theme.basic_font_size}

The “Bare” theme

We’re aware that our theme is used by thousands of customers and agencies. To simplifying the process of creating your very own theme for Shopware 5, we are pleased to introduce our “Bare” theme. It’s built using the latest web standards and provides a rock solid foundation which helps you build fast, robust and adaptable web shops.

Using the “Bare” theme as a parent theme

Using the “Bare” theme as the foundation for your own theme is easy.

To modify the parent theme of your custom theme, open your Theme.php file and modify the following property:

<?php
namespace Shopware\Themes\Example;

use Doctrine\Common\Collections\ArrayCollection;
use Shopware\Components\Form as Form;
use Shopware\Components\Theme\ConfigSet;

class Theme extends \Shopware\Components\Theme
{
 /** @var string Defines the parent theme */
 protected $extend = 'Bare';
}

Theme structure

The structure of a Shopware 5 theme is very similar to the one already existing in Shopware 4. It is still based on the available sections of Shopware, but it has been refined for easier maintaining. The new structure looks like:

├── documents
├── frontend
│ ├── _includes
│ ├── account
│ ├── blog
│ │ └── comment
│ ├── campaign
│ ├── checkout
│ │ └── items
│ ├── compare
│ ├── custom
│ ├── detail
│ │ ├── comment
│ │ └── tabs
│ ├── error
│ ├── forms
│ ├── home
│ ├── index
│ ├── listing
│ │ ├── actions
│ │ ├── filter
│ │ └── product-box
│ ├── newsletter
│ ├── note
│ ├── paypal
│ ├── plugins
│ │ ├── compare
│ │ ├── index
│ │ ├── notification
│ │ ├── payment
│ │ └── seo
│ ├── register
│ ├── robots_txt
│ ├── search
│ ├── sitemap
│ ├── sitemap_xml
│ └── tellafriend
├── newsletter
│ ├── alt
│ ├── container
│ └── index
└── widgets
 ├── checkout
 ├── compare
 ├── emotion
 │ └── components
 ├── index
 ├── listing
 └── recommendation

Differences between the Shopware 4 and Shopware 5 structure

Shopware 5 themes, like in Shopware 4, are still divided in great sections, with multiple subsections each. In addition we’ve divided the template files even smaller parts to increase the reusability and maintainability.

For example, we splitted the product box template file box_article.tpl in smaller parts which can be found in the listing/product-box folder.

We’ve also created a new folder named _includes, which contains components which are used across the whole Shopware theme.

The “Responsive” theme

The “Responsive” theme is our new default theme in Shopware 5. It is based on the “Bare” theme and provides its styling and client side functionalities.

Theme structure

As it’s based on the “Bare” theme, the “Responsive” theme only contains the LESS and javascript files, as well as the third party libraries:

└── _public
 ├── src
 │ ├── css
 │ ├── fonts
 │ ├── img
 │ │ ├── icons
 │ │ └── logos
 │ ├── js
 │ │ └── vendors
 │ │ ├── modernizr
 │ │ └── raphael
 │ └── less
 │ ├── _components
 │ ├── _mixins
 │ ├── _modules
 │ └── _variables
 └── vendors
 ├── css
 │ └── pocketgrid
 ├── fonts
 │ └── open-sans-fontface
 │ ├── Bold
 │ ├── ExtraBold
 │ ├── Light
 │ ├── Regular
 │ └── Semibold
 ├── js
 │ ├── jquery
 │ ├── jquery.event.move
 │ ├── jquery.event.swipe
 │ ├── jquery.transit
 │ ├── masonry
 │ └── picturefill
 └── less
 ├── normalize-less
 └── open-sans-fontface

Please notice that the _resources folder was renamed to _public. This folder now contains separated third-party and Shopware specific source files in its subfolders.

The third-party libraries can now be found under _public/vendors and the Shopware specific code under _public/src.

Installing third-party components using bower

Open the bower.json file, which can be found in the root directory of the theme, and add your third-party component in the dependencies object:

...
"dependencies": {
 "jquery": "2.1.1"
}
...

Now install the development dependencies using npm install in the root directory of the theme.

After installing the development dependencies, you just have to run grunt and your newly added third-party component will be installed in the directory frontend/_public/vendors.

License

The themes are licensed under the MIT License.

Copyright (c) shopware AG and individual contributors.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Introduction

This guide will provide you a quick overview on basic templating in Shopware 5 by providing a step by step explanation based on an example project. The content is aimed at beginners and lays the groundwork for templating and styling of Shopware themes. It shows the creation of a new theme and the usage of the Smarty template blocks to customize and add elements to the custom theme.

Table of contents

	Preview of the guide

	Bare and responsive theme

	Adding custom theme

	Selecting the new theme

	Directory structure

	Template inheritance

	Template blocks

	Adding LESS Files

	Result and summary

Preview of the guide

[image: Guide preview]
Guide preview

This guide explains how to add a new theme to the shop, implement a new element into the template and add styling by using the CSS pre-processor Less. The first task is to add a new theme and select it. In the second step, we want to add a button into the shop navigation of the frontend and style it correctly, so it fits on any device size. And as a last task we change the color of the cart button to a gradient that matches the default primary colors.

Templating

Bare and responsive

The default template folder of Shopware 5 is the Themes folder in the root directory. Inside the frontend folder, which is the focus of this guide, you can find our two default Shopware 5 themes.

	The Bare theme is the base of the Shopware frontend. It contains the basic element structure.

	The Responsive theme contains the default Shopware 5 Responsive theme styling based on the Bare theme.

Important: Do not change the Bare/Responsive themes themselves, as the changes might be overwritten by future updates.

Custom themes

Creating a theme with the Theme Manager

[image: Adding a new theme]
Adding a new theme

In order to create your theme, you have to click on the Create theme button inside the Theme manager and give it a suiting name (in this example: TutorialTheme) and some additional information. It will automatically create a folder inside the themes directory and add the required files for it to work.

The frontend folder now contains 3 themes:

	Bare

	Responsive

	TutorialTheme

Creating a theme with the Shopware CLI tools

You can also create a new custom theme by using the sw:theme:create CLI command:

sw:theme:create --description="Text" --author="shopware AG" --license="MIT" Responsive TutorialThemeFolder TutorialTheme

If you need a general introduction regarding the CLI commands you can take a look at our Shopware 5 CLI commands article.

Selecting themes

[image: Selecting a theme]
Selecting a theme

Before you can see any changes made to the files you are editing, you have to select the new theme. To choose the theme, first refresh the themes using the Refresh themes button and then simply click on the thumbnail image of your own created template and press the Select theme button.

Directory structure

The Shopware directory structure that is located in the Bare/Frontend folder contains subfolders (named after the controllers) that separate the template files by the specific frontend areas they relate to.

frontend
 ├── _includes
 ├── account
 ├── blog
 │ └── comment
 ├── campaign
 ├── checkout
 │ └── items
 ├── compare
 ├── custom
 ├── detail
 │ ├── comment
 │ └── tabs
 ├── error
 ├── forms
 ├── home
 ├── index
 ├── listing
 │ ├── actions
 │ ├── filter
 │ └── product-box
 ├── newsletter
 ├── note
 ├── paypal
 ├── plugins
 │ ├── compare
 │ ├── index
 │ ├── notification
 │ ├── payment
 │ └── seo
 ├── register
 ├── robots_txt
 ├── search
 ├── sitemap
 ├── sitemap_xml
 └── tellafriend

Template inheritance

While creating the theme you have the ability to choose an existing theme you want to inherit from. In this case you would want to inherit from the responsive theme. In other words, our new theme is based on Shopware’s Responsive theme which, in turn, inherits from the Bare theme.

If you want to edit a specific store section inside your new template, you would extend the already existing files that the Bare theme provides. In order to do that, you have to maintain the same directory structure that the Bare theme uses.

So, for instance, if you would like to modify the header, you would want to recreate the specific directory structure in order to be able to overwrite or extend the already existing elements. The frontend header in the shop-navigation.tpl file (which is later included into the index.tpl) is located inside the Frontend/Index folder.

This is how your template directory should look like.

TutorialTheme
 ├── frontend
 │ └── index
 │ └── shop-navigation.tpl

Inside your new shop-navigation.tpl file, you will have to extend the Bare theme’s default shop-navigation.tpl file by adding a extends function call. this allows you to keep the original elements from the Bare theme’s file, but also add other elements and overwrite existing ones. The file path of the extends function call has to match the directory structure of the Bare theme.

{extends file="parent:frontend/index/shop-navigation.tpl"}

Had we chosen not to use the extends function call, the content of the shop-navigation.tpl file from the inherited theme would be ignored when redering our theme, and our empty file would be used instead.

Template blocks

The Bare theme’s HTML structure is wrapped in Smarty’s block elements. These block elements group the frontend components into small, isolated blocks that can be edited/overwritten individually. To add changes to the elements of the Bare theme, you can’t simply write code inside your file. To customize a block, you have to call the correct Shopware block name.

There are 3 ways to interact with blocks and add your changes inside your new template file:

	append (adds content after the selected block)

	prepend (adds content before the selected block)

	overwrite (without calling append/prepend, overwrites the whole block)

In order to add a new button to your navigation menu, you would search for a fitting block and append/prepend a new element to it, so it displays before or after the already existing buttons inside the shop navigation menu.

{extends file="parent:frontend/index/shop-navigation.tpl"}

{block name='frontend_index_checkout_actions' prepend}
 // place your new element here
{/block}

The navigation menu uses elements to wrap its entries. In the example below, an icon is also added to the button.

{extends file="parent:frontend/index/shop-navigation.tpl"}

{block name='frontend_index_checkout_actions' prepend}
 <li class="navigation--entry">
 {* Add an URL to the href attribute to make your link work *}
 <i class="icon--star"></i>

{/block}

Add Less files

Less files can be added in a similar way to template files. The directory structure has to match the structure of the source files of the Responsive template. The sample directory structure would look like this:

TutorialTheme
 ├── frontend
 │ └── index
 │ └── shop-navigation.tpl
 │ └── _public
 │ └── src
 │ └── less
 │ └── all.less

To add new Less files, you need to create a new all.less file. This file is required, and should be used exclusively to import other Less files, in which you will define your custom styling. Your custom Less files can be imported by using the @import function on your all.less file. If you have extensive theme changes, it’s recommended to adapt the Less file subfolders of the Responsive theme to have a better overview, but in this case we will just create a new Less file called navigation.less.

//inside the all.less file
@import 'navigation';

The first step is to add some simple styling rules to the new button we just created, so that the icon is centered inside it. Inside the Less files, you are able to use all the Less mixins and variables that Shopware provides (e.g. the unitize mixin, that helps convert px values into relative rem values).

.starButton i.icon--star {
 .unitize(font-size, 18);
}

a.btn.starButton {
 .unitize(padding-top, 5);
}

Additionally, a few changes have to be made in order for the button to fit completely in the design for mobile devices. To address all problems, the search bar width has to be reduced and the mobile menu text has to be hidden to avoid any element overlapping.

To hide the menu text, take the offcanvas_left_trigger block inside the shop-navigation.tpl file, and overwrite it (without append or prepend) with a new block, without the description inside it.

{block name='frontend_index_offcanvas_left_trigger'}
 <li class="navigation--entry entry--menu-left" role="menuitem">

 <i class="icon--menu"></i>

{/block}

To change the search bar width, you can overwrite the default media query with the new width percentage.

.starButton i.icon--star {
 .unitize(font-size, 18);
}

a.btn.starButton {
 .unitize(padding-top, 5);
}

@media screen and (min-width: 30em) {
 .entry--search {
 width: 30%;
 }
}

As the last step, the cart button color needs to be changed. As said before, inside the Less files you have the ability to use all Less mixins and variables that Shopware provides. To create a gradient that matches the default store color you can use the @brand-primary and @brand-primary-light variables together with the .linear-gradient Less mixin. The last step is to change the colors of the icon and price inside the cart button.

.starButton i.icon--star {
 .unitize(font-size, 18);
}

a.btn.starButton {
 .unitize(padding-top, 5);
}

@media screen and (min-width: 30em) {
 .entry--search {
 width: 30%;
 }
}

@media screen and (min-width: 64em) {
 .navigation--list .entry--cart .cart--link .cart--amount {
 color: #fff;
 }
}

a.btn.is--icon-left.cart--link {
 .linear-gradient(@brand-primary-light, @brand-primary);
 border-color: @brand-primary;
 color: #fff;
}

Result

[image: Final Result]
Final Result

This guide provided you a simple tutorial on how to do a small template change with the following topics:

	Creating a new theme

	Extending the default theme with a new element

	Adding custom styles to the new theme

Table of contents

	What is Smarty?

	The basics

	Variables

	Modifiers

	Conditions

	Loops

	Template inheritance

	Inherit a standard theme

	Overwriting template files

	Extending template files

	Blocks

	Register custom Smarty plugins

What is Smarty?

Smarty is a template engine for PHP, facilitating the separation of presentation (HTML/CSS) from application logic.

- www.smarty.net -

Smarty 3 is used as the template engine for all frontend logic in Shopware. You don’t have to know much about PHP or accessing data from the system when it comes to building your own shop themes. While editing the frontend you can focus on HTML, CSS, JavaScript and of course a little bit of Smarty code.

The basics

Smarty uses a markup-like syntax which you may already know from HTML or XML. All Smarty tags and functions start with a left curly bracket { and end with a right curly bracket } like the <> in HTML. Files including Smarty code are called template files and use the .tpl extension. You can imagine them as normal HTML files which contain additional Smarty tags. The template engine will render these files and generate valid HTML from it. In the following example we define a simple tag.

Example: Simple Smarty tag

{s name="shopName"}DemoShop{/s}

In our example, we use the {s} tag, which is used to define text as a snippet and make it translatable. You can see that some Smarty tags wrap the content with a starting and a closing tag, like other markup languages do. They can also have different attributes, like the name="" of the snippet in our example.

So, in Smarty, we have different tags and actions we can use, along with our normal HTML code. But why do we need them? What can we do with them? Let’s dive deeper.

Variables

To start with, we use Smarty to output the data we receive from the shop system. So every page which is rendered by the template engine is served with the necessary data to show the requested content. The data is stored in so called template variables. All template variables can be accessed via Smarty with a starting $ and the name of the variable.

Example: Variable output

<h2>{$sArticle.name}</h2>

This short example will output the content of the variable in a normal <h2> element. The dividing . in the variable name is used for accessing sub-values. As shown in this example, a template variable may not only be of a simple string or number type, but also of a large set of data, a so called array. In our example we have a template variable called sArticle, which is an array containing several fields, including the field name. Template variables can be nested even deeper. You may find something like {$sArticle.image.thumbnails[0].source} in our template code. All fields of an array can also be accessed with the [] syntax you may know from PHP.

Modifiers

Sometimes we not only want to simply output the content of a variable, but manipulate the values before they get rendered. This is where Smarty modifiers come in place. Modifiers are small functions you can apply to the template variables to modify the output.

Example: Applying a modifier to a variable

<div>
 {$sArticle.description|truncate:120}
</div>

As you can see, the modifier is applied by simply adding a | and the name of the modifier right after the variable name. In this example the truncate modifier is applied to the description, shortening the text to a given maximum number of characters. Parameters like the amount of 120 are added via : to the modifier.

You can also use more than one modifier on a variable by lining them up. They get applied in the order in which they are appended. For example if you want to remove the HTML tags from the description variable before truncating it, you put the according modifier right before the truncate modifier.

Example: Applying two modifiers

<div>
 {$sArticle.description|strip_tags|truncate:120}
</div>

Conditions

You might need to vary the output based on different decisions. To decide what is being rendered, you can do a check of a variable against a condition. A simple condition is defined by a starting {if} tag, which contains the check, and a closing {/if} tag. The content between these tags is only rendered when the check is true.

Example: Defining a condition

{if $sArticle.description}
 {$sArticle.description}
{else}
 {$sArticle.description_long|strip_tags|truncate:120}
{/if}

In the example, we define a simple condition which tests if the variable is defined. As you can see, the condition wraps an {else} tag, which renders a fallback content in case the given condition is not true. Conditions can be nested even deeper by adding additional checks with {elseif}. In our example, we do a very simple check, but you can use different operators to build more complex conditions. Here you can find a complete overview of possible operators.

Loops

To handle a larger set of data, like a list of products, we can create dynamic output by looping through the data. For example, you can iterate through an array which contains the data of several products and generate the content for each product automatically.

Example: Looping through an array

 {foreach $sArticles as $item}
 {$item.name}
 {/foreach}

The loop starts with a {foreach} tag and also ends with a closing {/foreach} tag. In the starting tag, we define the array we want to iterate through ($sArticles) and a name for the variable in which the single data set will be provided within the loop ($item). The template engine will now render the code between the {foreach} tags for every item in the array, providing the single item in a new variable. In our example we loop through the product data in $sArticles and generate a new list entry for each product containing the name of the product.

Official documentation

Of course there are many other things you can do with Smarty, but these basic features are the most common tools you will use in your everyday work. If you want to go a little further you can read the full Smarty 3 documentation here.

Template inheritance

To edit an existing template file in Shopware you do not have to copy the whole file or overwrite the core files. With the template inheritance system, you only have to edit the parts you really want to change. This has many advantages:

	not necessary to copy whole templates

	less code to write and to maintain

	your template is always update compatible

	your template can still be extended by plugins

Inherit a standard theme

We recommend to always use the inheritance system when creating custom themes . It will save you a lot of time and work. With Shopware 5 we offer two standard themes you can build on. The most common case is to build on the new Shopware Responsive theme. It is a very modern, fully responsive theme, which implements all the amazing features of Shopware 5. You only have to do your design changes, without having to rebuild the whole functionality of the shop. If you want to go even deeper and build your own features from scratch, you can inherit the Shopware Bare theme, which only implements the basic HTML structure. To specify which theme you want to inherit, you add the corresponding name to the Theme.php of your own custom theme.

Example: Specify a parent theme in the Theme.php

class Theme extends \Shopware\Components\Theme
{
 protected $extend = 'Responsive';

 // ...
}

Overwriting template files

Shopware uses a fixed directory structure for all parts of the frontend, where each part has its own directory with its own template files. In each of these directories you will find an index.tpl file, which contains the base template for the whole part. When you defined a parent theme, you can overwrite the existing template files just by creating the same file in your own theme directory. For example, if you want to completely overwrite the product detail page, you can create the file with the corresponding directory structure frontend/detail/index.tpl in your own theme. Shopware will automatically detect the files you created and add them to the inheritance system.

Extending template files

In most cases you don’t want to overwrite the whole template file, but only edit some parts of it. Therefore you can use the {extends} method of Smarty. Right at the top of your file you define the path to a template file you want to inherit.

Example: Extending a template file

{extends file="parent:frontend/detail/index.tpl"}

In the file="" attribute of the {extends} action you define the path starting from the root of the theme directory. The special parent: prefix tells Shopware to search for the file in the directory of the parent theme. This allows us to extend the templates of the defined parent theme.

An extended file cannot have its own HTML structure, because you have to tell the engine where to put your template code. Instead you’re provided with all content blocks the parent file has defined.

Blocks

Smarty blocks are used for structuring template code in logical segments. These blocks can be accessed by other files to extend the template at a given point. To create a block in Smarty you use the {block} tag which defines its content as a new segment. Every block needs a name="" attribute to define a unique name for the segment. This name is used to access the block from other files via the inheritance system.

Example: Defining a content block in Smarty

{block name="frontend_index_logo"}

 <div class="logo--shop">
 //...
 </div>

{/block}

When you inherit a template file via the {extends} method, you’re provided with all blocks from the parent file. These are your access points to make changes or add your additional code. There are three possibilities on how you can use these blocks.

	replace: the original content will be overwritten by the new content. - default -

	prepend: new content will be added before the original content.

	append: new content will be added after the original content.

The insert mode you want to use is just added as an attribute to the {block} tag. If you don’t explicitly specify a method, by default, the existing content of the block will be replaced by the new content you defined. In other words, you don’t always have to add the replace attribute. But if you want to only append your new content and leave the original content untouched, you can use the prepend or append attributes.

Example: Appending the content of a Smarty block

{block name="frontend_index_logo" append}

 <div class="shop--slogan">
 <h2>My shop is the best!</h2>
 </div>

{/block}

In the example above, we use the append attribute on the frontend_index_logo block to append a slogan right after the shop logo. The original code stays unchanged while the new content for our slogan is placed right after it. To edit or extend existing templates you have to do the following steps:

	Find the block of the content you want to edit in the template file.

	Create the template file under the same structure in your own theme directory.

	Add the {extend} tag at the beginning of your file and enter the path to the original file.

	Define the {block} from the original file to replace it. Use the append or prepend attribute if you want to add new content.

Register custom Smarty plugins

In Shopware 5 we added the ability to register your own custom Smarty plugins in your theme. This enables you to create new modifiers and Smarty functions. To register a new Smarty plugin just create the necessary directory structure in your theme directory. If you want to learn more about writing Smarty plugins you can see the official guide.

Example: Path to custom Smarty plugins

/_private/smarty/function.markdown.php
/_private/smarty/modifier.picture.php

Table of contents

	What is LESS?

	Why LESS?

	Using LESS in your theme

	Responsiveness in Shopware

	Predefined mixins and components

	LESS variables in Shopware

	Creating CSS source maps

What is LESS?

Less is a CSS pre-processor, meaning that it extends the CSS language, adding features that allow variables, mixins, functions and many other techniques that allow you to make CSS that is more maintainable, themable and extendable.

- www.lesscss.org -

In Shopware 5 we included a PHP-parser for LESS. It enables the designer to use it as a CSS pre-processor in Shopware themes, which brings the advantage of several interesting features like variables or mixins. We do not want to explain every detail of LESS in this article, but show you how to use it in your Shopware theme. The official documentation provides you with all information about the features of LESS.

	Language Features

	Function Reference

Why LESS?

We often get asked why we decided to use LESS instead of SASS or something else. Without starting a discussion war about CSS pre-processors we want to provide you with some arguments why we decided to use LESS in Shopware.

	LESS is very lightweight and easy to learn for third party developers who never worked with CSS pre-processors

	There is a stable PHP-parser for LESS

	No dependency to other languages like Ruby etc.

No reason to get sad, SASS-lovers. Keep in mind that LESS is just a recommendation by us and the compiler a tool we wanted to provide to third party developers. You can use the pre-processor of your choice at any time. Feel free to compile files with other tools and add the compiled CSS to your theme.

Using LESS in your theme

It is very easy to use LESS in your own custom Shopware theme. Just create the corresponding directory in your public resources: frontend/_public/src/less/. In the less/ directory you have to create an all.less file which will be added to the Shopware compiler automatically. Of course you can put all your code into one file, but for a better structure we recommend to create separate files for each part of your theme and include them by using the @import method in the all.less.

Responsiveness in Shopware

We use LESS for some special purposes which are very helpful when creating full responsive themes.

The .unitize() mixin

In a full responsive template you cannot rely on fixed pixel values. The site has to scale dynamically to fit the screen size, pixel density and browser fontsize. Therefore we decided to build a central measurement mixin, which can convert pixel values to other measurement units. This has the advantage to use readable pixel values in your LESS files, but the compiled CSS will have dynamic measurement units and the type of unit can be changed at a central point. In the Shopware Responsive theme we decided to convert to rem values, so all measurements get scalable by the basic fontsize.

 Example: Using the unitize mixin

.my--class {

 .unitize(font-size, 16); // Single properties

 .unitize-width(200); // Helpers for width and height

 .unitize-padding(20, 20); // Helper for padding accepting the four value syntax

 .unitize-margin(10, 0, 0, 0); // Helper for margin accepting the four value syntax

 // ...
}

Breakpoint variables

For the Responsive theme we use CSS media queries to create different device breakpoints, so the template can be adjusted to fit the corresponding device type. To be more flexible we created configuration variables which are used in all media queries.

@phoneLandscapeViewportWidth: 30em; // 480px
@tabletViewportWidth: 48em; // 768px
@tabletLandscapeViewportWidth: 64em; // 1024px
@desktopViewportWidth: 78.75em; // 1260px

Example: Using breakpoint variables in media queries

.my--class {
 .unitize-padding(10, 0);
}

@media screen and(min-width: @tabletViewportWidth) {

 .my--class {
 .unitize-padding(20, 0);
 }

}

Following the mobile first concept you start creating your styles for the mobile viewport and proceed upwards by using the min-width media query to start a new breakpoint at the given minimum screen size.

Predefined mixins and components

We already created several mixins for CSS3 cross-browser support and some other useful features. Also when extending from the Shopware Responsive theme you have access to all standard components like buttons, alerts, and so on. They all follow a simple CSS class syntax which you might know from other frameworks. For example creating a basic button you just add the class btn to your element. To make it a highlighted primary button you can extend the styles by adding additional configuration classes like is--primary. We have a complete documentation of all Shopware basic components in the Shopware 5 Styletile.

All Shopware mixins

	appearance.less

	backface-visibility.less

	border-radius.less

	box-shadow.less

	box-sizing.less

	clearfix.less

	linear-gradient.less

	icon-element.less

	opacity.less

	rotate.less

	scale.less

	touch-callout.less

	transform-style.less

	transform-origin.less

	transition.less

	translate.less

	unitize.less

	user-select.less

	transform.less

	tap-highlight-color.less

	keyframes.less

	animation.less

	column-count.less

	hyphens.less

	cursor.less

LESS variables in Shopware

Here you get an overview about all defined LESS variables in the Shopware Responsive theme.

// Breakpoints
@phoneLandscapeViewportWidth: 30em; // 480px
@tabletViewportWidth: 48em; // 768px
@tabletLandscapeViewportWidth: 64em; // 1024px
@desktopViewportWidth: 78.75em; // 1260px

// Basic color definition
@brand-primary: #d9400b;
@brand-primary-light: saturate(lighten(@brand-primary,12%), 5%);
@brand-secondary: #5f7285;
@brand-secondary-dark: darken(@brand-secondary, 15%);

// Grey tones
@gray: #f5f5f8;
@gray-light: lighten(@gray, 1%);
@gray-dark: darken(@gray-light, 10%);
@border-color: @gray-dark;

// Highlight colors
@highlight-success: #2ecc71;
@highlight-error: #e74c3c;
@highlight-notice: #f1c40f;
@highlight-info: #4aa3df;

//Scaffolding
@body-bg: darken(@gray-light, 5%);
@overlay-bg: #555555;
@text-color: @brand-secondary;
@text-color-dark: @brand-secondary-dark;
@link-color: @brand-primary;
@link-hover-color: darken(@brand-primary, 10%);
@rating-star-color: @highlight-notice;

// Base configuration
@font-size-base: 14;
@font-base-weight: 500;
@font-light-weight: 300;
@font-bold-weight: 600;
@font-base-stack: "Open Sans", "Helvetica Neue", Helvetica, Arial, "Lucida Grande", sans-serif;
@font-headline-stack: @font-base-stack;

// Heading font sizes
@font-size-h1: 26;
@font-size-h2: 21;
@font-size-h3: 18;
@font-size-h4: 16;
@font-size-h5: @font-size-base;
@font-size-h6: 12;

// Shopware font directory
@font-directory: "../../fonts/";

// Open Sans font directory
@OpenSansPath: "../../fonts/open-sans-fontface";

// Button text sizes
@btn-font-size: 14;
@btn-icon-size: 10;

// Default Button
@btn-default-top-bg: #FFFFFF;
@btn-default-bottom-bg: @gray-light;
@btn-default-hover-bg: #FFFFFF;
@btn-default-text-color: @text-color;
@btn-default-hover-text-color: @brand-primary;
@btn-default-border-color: @border-color;
@btn-default-hover-border-color: @brand-primary;

// Primary Button
@btn-primary-top-bg: @brand-primary-light;
@btn-primary-bottom-bg: @brand-primary;
@btn-primary-hover-bg: @brand-primary;
@btn-primary-text-color:#FFFFFF;
@btn-primary-hover-text-color: @btn-primary-text-color;

// Secondary Button
@btn-secondary-top-bg: @brand-secondary;
@btn-secondary-bottom-bg: @brand-secondary-dark;
@btn-secondary-hover-bg: @brand-secondary-dark;
@btn-secondary-text-color: #FFFFFF;
@btn-secondary-hover-text-color: @btn-secondary-text-color;

// Panels
@panel-header-bg: @gray-light;
@panel-header-font-size: 14;
@panel-header-color: @text-color;
@panel-border: @border-color;
@panel-bg: #FFFFFF;

// Labels
@label-font-size: 12;
@label-color: @text-color;

// Form base
@input-font-size: 16;
@input-bg: @gray-light;
@input-color: @brand-secondary;
@input-placeholder-color: lighten(@text-color, 15%);
@input-border: @border-color;

// Form states
@input-focus-bg: #FFFFFF;
@input-focus-border: @brand-primary;
@input-focus-color: @brand-secondary;
@input-error-bg: desaturate(lighten(@highlight-error, 38%), 20%);
@input-error-border: @highlight-error;
@input-error-color: @highlight-error;
@input-success-bg: #FFFFFF;
@input-success-border: @highlight-success;
@input-success-color: @brand-secondary-dark;

// Tables
@panel-table-header-bg: @brand-secondary-dark;
@panel-table-header-color: #FFFFFF;
@table-row-bg: #FFFFFF;
@table-row-color: @brand-secondary;
@table-row-highlight-bg: darken(@table-row-bg, 4%);
@table-header-bg: @brand-secondary;
@table-header-color: #FFFFFF;

// Badges, Hints
@badge-discount-bg: @highlight-error;
@badge-discount-color: #FFFFFF;
@badge-newcomer-bg: @highlight-notice;
@badge-newcomer-color: #FFFFFF;
@badge-recommendation-bg: @highlight-success;
@badge-recommendation-color: #FFFFFF;
@badge-download-bg: @highlight-info;
@badge-download-color: #FFFFFF;

Creating CSS source maps

To make a designers life easier when working with LESS we added the possibility to automatically create CSS source maps. This is very useful when debugging existing styles.

[image: Theme settings]
Theme settings

To enable the CSS source maps go to Configuration -> Theme Manager -> Settings -> Create a CSS source map.

After clearing the theme cache you can see the mapping to the LESS files in your developer console.

[image: Debugging styles with source maps]
Debugging styles with source maps

Table of contents

	Introducing

	Plugin base class

	Getting started

	Class properties

	Class methods

	Global jQuery event observer

	The state manager

	Using the state manager

	Adding an event listener

	Register additional breakpoints

	Class methods

	Working with stateful jQuery plugins

	Passing a user configuration to the jQuery plugin

	Adding javascript files to your theme

	Installing third-party components using bower

Introducing

The javascript development can be painful especially when you have to deal on responsive websites where you have to adjust the behavior of the code based on the available screen real estate. Therefore we came up with a component called StateManager, which provides you with the ability to define states and triggers callback function, if a state was entered or left.

On the other hand we have our lovely jQuery plugins which are not always a pleasure to built. To simplify the process we implemented a plugin base class which features the best practices of the jQuery plugin development and flawlessly integrate with the StateManager.

In the following document we wannt to guide you through we want to give you a general overview of the provided functionality, which can come in handy for your next theme.

Plugin base class

As mentioned, the jQuery plugin base class was built up with the best practice of the jQuery plugin development. Here’s feature set at a glance:

	Default configuration + ability to override it with a user configuration

	Ability to use HTML5 data attributes to configure the plugin

	Support for jQuery’s method chaining

	Namespacing of events

	Built-in functionality to remove event listeners

	Preventing multiple instanciation on the same element

	Custom expression to check if an element uses a specific plugin

	Automatically binding the plugin to the element using jQuery’s data-method

As you can see, we put a lot of effort in the provided feature set to provide you an easy to use class for your next jQuery plugin.

Getting started

Now it’s time to take a look on the actual implementation process of a jQuery plugin using the plugin base class. Here’s a commented example of a generic plugin:

/**
 * Example jQuery plugin using the base class
 *
 * The $.plugin method binded to the globally available jQuery
 * object. The method needs two parameters, the first one is
 * simply the name of the plugin which will be used to bind
 * the plugin to jQuery's $.fn namespace. The second parameter
 * is a object which provides the default configuration and
 * the actucal implementation of the plugin.
 */
$.plugin('example', {

 /**
 * The default configuration object of the plugin. The
 * user can provide custom settings which will be automatically
 * merged into a new object which can be accessed using "this.opts"
 * in any plugin method which scope is on the plugin.
 */
 defaults: {
 activeCls: 'js--is-active'
 },

 /**
 * The "init" method acts like a constructor for the plugin.
 * Usually you'll cache necessary elements and registers the
 * event listeners for your plugin. Additionally you can switch
 * up the behavior of the plugin based on the provided configuration.
 */
 init: function() {
 var me = this;

 /**
 * Calling the "applyDataAttributes" method the base class
 * automatically reads out the all "data" attributes from
 * the element and overrides the configuration. It's especially
 * useful if you want to configure your plugin using the HTML
 * markup instead of providing a configuration object.
 *
 * For example, we call this plugin on the following element:
 * <div data-activeCls="some-other-class">...</div>
 *
 * ... the "data" attribute will override the "activeCls"
 * property with the value "some-other-class".
 */
 me.applyDataAttributes();

 /**
 * Now we're setting up a new event listener for the plugin
 * using the built-in "_on" method which is actually a proxy
 * method for jQuery's "on" method with some additional benefits.
 * The event listener and the event will be registered in a
 * plugin specific event collection. The collection will be
 * automatically iterated and removes the registered event listeners
 * from the element.
 * Additionally the event name will be namespaced on the fly which
 * provides us with a safe way to remove a specific event listener from
 * an element and doesn't affect other plugins which are listening on
 * the same event.
 */
 me._on(me.$el, 'click', function(event) {
 event.preventDefault();

 /**
 * In the condition we're using the custom expression of the plugin
 * to terminate if the element uses our plugin.
 * Additionally you see that we're using the variable "this.$el" which
 * is the element that has instanciated the plugin.
 */
 if(me.$el.is('plugin-example')) {

 /**
 * Now we're accessing the merged configuration of the plugin using
 * the variable "this.opts".
 */
 me.$el.toggleClass(me.opts.activeCls);
 }
 });
 },

 /**
 * The destroy method can either be called programmically from outside the plugin
 * or automatically using the "StateManager" when the defined states are left.
 * Usually you remove classes which were added by your plugin to the element and
 * removes the event listeners from the element.
 */
 destroy: function() {
 var me = this;

 me.$el.removeClass(me.opts.activeCls);

 /**
 * Calling the "_destroy" method will remove all event listeners which were
 * registered using the "_on" method of the plugin base.
 * You can access the collection of the events in the plugin using the variable
 * "this._events" if you wanna iterate over the event listeners yourself.
 */
 me._destroy();
 }
});

Fully commented jQuery plugin using the base class.

Class properties

	_name : String

	Name of the plugin.

	$el : jQuery

	The HTMLElement which instanciated the plugin as a jQuery object.

	opts : Object

	Result of the default configuration and the provides user configuration. Keep in mind that calling the this.applyDataAttributes() method overrides the property values in the object.

	_events : Array

	Collection, which contains all registered event listener which are added using the _on method.

Class methods

	init()

	Template method which acts as the constructor of the plugin where you can cache the necessary HTML elements and set up the event listeners.

	destroy()

	Template method which destroyes the plugin. Usually you remove classes and event listeners which you’re added to the element. The method should be implemented in your plugin especially when you plan to provide the plugin functionality only for certain states.

	update()

	Template method which will be called when a certain state was entered / left to update the behavior of the plugin. This method is only necessary when you use the StateManager to instanciate the plugin.

	_destroy()

	Private method which iterates over the registered event listeners in the _events property of the plugin. Additionally the method removes the in-memory binding of the plugin to the element using the jQuery’s removeData() method and fires an event on the globally available observer.

	_on()

	Arguments

	element : jQuery | HTMLElement - The event target for the specified event listener.

	event : String - A string representing the event type to listen for.

	fn : Function - The object that receives a notification when an event of the specified type occurs.

	Proxy method for jQuery’s on() method which binds an event listener to the provided element and registers the listener in the _events event collection.

	_off()

	Arguments

	element : jQuery | HTMLElement - The event target which has an event listener

	event : String - One or more space-separated event types and optional namespaces, or just namespaces, such as “click” or “keydown.myPlugin”

	getName()

	Getter method for the plugin name.

	getEventName()

	Arguments

	event : String | Array - One or more space-separated event types

	Applies the event namespace to the provided event types.

	getElement()

	Getter method for the element which instanciate the plugin.

	getOptions()

	Getter method for the merged configuration object.

	getOption()

	Arguments

	key : String - Key of the configuration property

	Getter method for a certain configuration property

	setOption()

	Arguments

	key : String - Key of the configuration property

	value : Mixed - Value for the provided key

	Setter method which overrides the value of the provided key with the provided value.

	applyDataAttributes()

	Fetches the provided configuration keys and overrides the values based on the elements data attributes.

Global jQuery event observer

We added a global event server into Shopware 5 too. It provides us with the ability to define events globally on the jQuery object and therefor every plugin can listen to this events:

// Register new event
$.publish('plugin/some-plugin/onInit', me);

// Listen for an event
$.subscribe('plugin/some-plugin/onInit', function() {
 console.log('onInit');
})

// Remove event listener
$.unsubscribe('plugin/some-plugin/onInit');

Please keep in mind to register your event listeners with a namespace, otherwise you’ll remove all subscribed event listeners for the certain event type.

$.subscribe('plugin/some-plugin/onInit.my-plugin', function() {});

// Remove event listener
$.unsubscribe('plugin/some-plugin/onInit.my-plugin');

The state manager

The state manager helps you master different behaviors for different screen sizes. It provides you with the ability to register different states that are handled by breakpoints.

Those breakpoints are defined by entering and exiting points (in pixels) based on the viewport width. By entering the breakpoint range, the enter() functions of the registered listeners are called. When the defined points are reached, the registered exit() listener functions will be called.

This way you can register callbacks that will be called on entering / exiting the defined state.

The manager provides you multiple helper methods and polyfills which help you master responsive design.

Using the state manager

The state manager is self-containing and globally available in the global javascript scope in the storefront.

It has been initialized with the following breakpoints:

	State XS

	Range between 0 and 479 pixels

	Usually used for smartphones in portrait mode

	State S

	Range between 480 and 767 pixels

	Usually used for smartphones in landscape mode

	State M

	Range between 768 and 1023 pixels

	Usually used for tablets in portrait mode

	State L

	Range between 1024 and 1259 pixels

	Usually used for tablets in landscape mode, netbooks and desktop PCs

	State XL

	Range between 1260 and 5160 pixels

	Usually used for desktop PCs with a high resolution monitor

Adding an event listener

Registering or removing an event listener which uses the state manager is as easy as doing it in pure javascript.

The following example shows how to register an event listener:

StateManager.registerEventListener([{
 state: 'xs',
 enter: function() { console.log('onEnter'); },
 exit: function() { console.log('onExit'); }
}]);

The registration of event listeners also supports wildcards, so the enter() and exit() methods are called by every change of the breakpoint:

StateManager.registerEventListener([{
 state: '*',
 enter: function() { console.log('onEnter'); },
 exit: function() { console.log('onExit'); }
}]);

Register additional breakpoints

The default breakpoints can be extended using the registerBreakpoint() method of the StateManager:

StateManager.registerBreakpoint({
 state: 'xxl',
 enter: 78.75 // = 1260px
 exit: 90 // = 1440px
});

Class methods

	init()

	Arguments

	breakpoints : Array | Object - The states, which should be available on start up

	Initializes the StateManager and registers the provided breakpoints, adds a browser specific class to the html element and sets a device specific cookie.

	registerBreakpoint()

	Arguments

	breakpoints : Array | Object - The states, which should be available on start up

	Registers an additional breakpoint to the State Manager.

	removeBreakpoint()

	Arguments

	state : String - State which should be removed e.g. “xs” or “l”

	Removes the provided state from the StateManager.

	registerListener()

	Arguments

	listener : Array | Object - Either a single listener object or an array with multiple listener objects

	Registers an event listener to the StateManager. The listener will be fired when the provided state is entered or left.

	addPlugin()

	Arguments

	selector : String | HTMLElement | jQuery - Element selector

	pluginName : String - Name of the plugin which should be added to the selector.

	config : Object (optional) - Custom configuration for the plugin. Can be omitted.

	viewport: Array | String - The states where the plugin should be active.

	Registers a jQuery stateful to the StateManager. This functionality is especially useful when you want to provide a certian behavior only for specific states.

	removePlugin()

	Arguments

	selector : String | HTMLElement | jQuery - Element selector

	pluginName : String - Name of the plugin which should be removed from the selector.

	viewport: Array | String - A state where the plugin should be removed.

	Removes a previously added plugin from a element for a certain state.

	updatePlugin()

	Arguments

	selector : String | HTMLElement | jQuery - Element selector

	pluginName : String - Name of the plugin which should be updated.

	Programmatically update a plugin on an element. Usually the StateManager should call the update() method of the plugin themself. The method calls the update() method of the plugin.

	destroyPlugin()

	Arguments

	selector : String | HTMLElement | jQuery - Element selector

	pluginName : String - Name of the plugin which should be destroyed.

	The method removes the plugin from the StateManager. Unlike to the removePlugin() method, the method calls the destroy() method of the provided plugin.

	getViewportWidth()

	Getter method which returns the current width of browser window.

	getViewportHeight()

	Getter method which returns the current height of browser window.

	getPreviousState()

	Returns the previous state. This can be either a String or null when no previous state was active.

	isPreviousState()

	Arguments

	state : String - State which should be checked e.g. “xs” or “l”

	Determine if the argument passed was the previous active state.

	getCurrentState()

	Getter method which returns the currently active state.

	isCurrentState()

	Arguments

	state : String - State which should be checked e.g. “xs” or “l”

	Determine if the argument passed is the currently active state.

	isPortraitMode()

	Determine if the device is in portrait mode.

	isLandscapeMode()

	Determine if the device is in landscape mode.

	getDevicePixelRatio()

	Determine the pixel device ratio of the device.

	isBrowser()

	Arguments

	browser : String - Browser name to test e.g. “firefox” or “safari”

	Determine if the argument passed is the current browser of the user.

	getScrollBarHeight()

	Returns the default scroll bar width of the browser.

	matchMedia()

	matchMedia polyfill, which provides the ability to test CSS media queries in javascript.

	requestAnimationFrame()

	requestAnimationFrame polyfill for cross-browser support

	cancelAnimationFrame()

	cancelAnimationFrame polyfill for cross-browser support

	getVendorProperty()

	Arguments

	property : String - The property which needs the vendor prefix

	softError : Boolean - Truthy to return the provided property when no vendor was found, otherwise the method returns null

	Tests the provided CSS style property on an empty div with all vendor properties.

Working with stateful jQuery plugins

The combination of the StateManager paired with the jQuery plugin base class provides an easy-to-use way to register jQuery plugins for certain state. That provides us with the ability to provide a different behavior of components based on the current active state. For example the Offcanvas menu plugin is only active on mobile devices (states “xs” and “s”) and is disabled on tablets and desktop pc’s.

The state manager is available in the global javascript scope of the storefront. To register your plugin, simply can call the addPlugin() method of the state manager.

In the following example we register our own jQuery plugin for the XS and S states. The name of the plugin is “myPlugin” and we will bind it to the HTML DOM nodes which have the class .my-selector:

StateManager.addPlugin('.my-selector', 'myPlugin', ['xs', 's']);

Passing a user configuration to the jQuery plugin

It’s also possible to pass user configuration options to the plugin, which will be merged with the plugin’s default configuration. The merged configuration is accessible using the this.opts object in your plugin.

// your plugin
$.plugin('myPlugin', {
 defaults: {
 'speed': 300
 }
});

// Registration of the plugin
StateManager.addPlugin('.my-selector', 'myPlugin', {
 'speed': 2000
}, ['xs', 's']);

If you need to pass a modified configuration to your plugin for a specific viewport, you can use the following pattern:

StateManager.addPlugin('.my-selector', 'myPlugin', {
 'speed': 300
}).addPlugin('.my-selector', 'myPlugin', {
 'speed': 2000
}, 's');

Adding javascript files to your theme

Working with compressors isn’t always as easy as adding the files to your HTML structure using script tags. The built-in javascript compressor is as easy as this and perfectly suited your workflow as a web developer.

Simply place your javascript files in the frontend/_public folder and add their paths to the $javascript array in your Theme.php, and you’re good to go.

/** @var array Defines the files which should be compiled by the javascript compressor */
protected $javascript = array(
 'src/js/jquery.my-plugin.js'
);

Installing third-party components using bower

Open the bower.json file, which can be found in the root directory of the theme, and add your third-party component in the dependencies object:

...
"dependencies": {
 "jquery": "2.1.1"
}
...

Now install the development dependencies using npm install in the root directory of the theme.

After installing the development dependencies, you just have to run grunt and your newly added third-party component will be installed in the directory frontend/_public/vendors.

Snippets are an extremely easy and useful way to translate and customize the Shopware storefront texts. By using snippets, you are able to determine the content of a specific text part of the theme individual for every shop. The part you would like to edit has to be wrapped inside a snippet tag. Every snippet is editable in the Shopware 5 backend by using the snippet administration module.

Snippets during plugin/theme development

Creating snippets

Snippets can be added inside the template files of Shopware using the Smarty snippet tag {s}. Each snippet has several values associated to it:

	name: This is a required parameter, and must be unique inside each snippet namespace. Usually, the snippet name reflects its usage or purpose inside the specific namespace (context) to which it belongs

	namespace: Also required, the namespace is a string that identifies the context to which the snippet belongs. Traditionally, similar functionalities share a common context.

	default value: optional but highly recommended. This is the fallback value used for your snippet, in case a value is not present in the database or .ini files. It’s recommended that you set a snippet’s default value to the snippets “real” English value.

Inside a Smarty file, you can declare snippets like so:

{s name="frontend/checkout/cart/separate_dispatch" namespace="frontend/listing/box_article"}example text{/s}

Like mentioned before, namespaces identify the context of the snippet’s usage. As such, it usually makes sense that all the snippets inside a template file share a common context. Should you decide to use this best practice, you can declare a general namespace for the whole file at its start:

{namespace name="frontend/listing/box_article"}

If you use this feature, your snippets will no longer require an explicit declaration of namespace, and you can remove it:

{s name="frontend/checkout/cart/separate_dispatch"}example text{/s}

You can optionally still declare the namespace in that snippet. The namespace declared in the snippets takes precedence over the file’s global namespace. Use this if you need to reuse, in your current namespace, a snippet from another namespace. Keep in mind that this is not recommended, as later changes to that snippet will impact multiple points of your plugin, potentially causing undesired consequences.

Using snippets

As a rule of thumb, all interface texts that will be visible to the end user should be a snippet. The main advantage of snippet usage is internationalization. If your plugin uses snippets, it will be easy to identify and fix missing translations, making your plugin compatible with Shopware shops aimed at different markets.

Another advantage is that snippets can be customized by the shop owner. Should he have special naming conventions for his shop, he will be able to adapt your plugin to his needs, instead of looking for an alternative solution.

While snippets are mostly used to translate plain text, they are flexible enough to be used in other scenarios. For example, snippets can contain HTML code, including inline CSS (which is, of course, not recommended), giving you and your customers even more customization possibilities.

{s name="frontend/checkout/cart/separate_dispatch"}bold example text{/s}

Understanding snippet handling

Snippet handling is configurable, so you can decide exactly how snippets are loaded and saved by Shopware. This can be changed in your config.php file, inside the snippet section:

array(
 'db' => array(
 // your database configuration
),
 'snippet' => array(
 'readFromDb' => true,
 'writeToDb' => true,
 'readFromIni' => false,
 'writeToIni' => false,
 'showSnippetPlaceholder' => false //introduced in Shopware 5.0.2
),
)

When handling snippets while rendering templates, the following workflow is used:

	If readFromDb is true, Shopware will look for your snippet value in the database

	If the snippet is not present in the database, has a default value set and writeToDb is true, Shopware will write that value into the database.

	If readFromIni is true, Shopware will look for your snippet value in your .ini files.

	If the snippet is not present in the .ini file, has a default value set and writeToIni is true, Shopware will write that value into an .ini file.

The additional showSnippetPlaceholder (introduced in Shopware 5.0.2) option allows you to specify how you want Shopware to display empty and undefined snippets (snippets that are declared in your template files, but are not defined or defined as empty in your database and/or .ini files). By default, these snippets are displayed as an empty string, which is recommended for production environments. If you set this option to true, these snippets will be rendered as their name wrapped in hash signs. This makes it easier for you to identify and handle missing or empty snippets during development.

The above example configuration values represent the default values that are used in Shopware. They are optimized for production environments, and should be used in those scenarios. You can change those values, at any time, for example, for development purposes.

Setting snippet values

While developing with snippets, you need to declare them in your template files and, later on, assign them values besides the default ones. These values can be set inside .ini files:

[en_GB]
frontend/checkout/cart/separate_dispatch = "example text"

[de_DE]
frontend/checkout/cart/separate_dispatch = "Beispieltext"

.ini files are divided internally in groups, names after the locales to which those snippets belong. The example above translated the snippets from the example above into UK English and German. You can add as many sections to your .ini files as you want, as long as they match the locale definitions of Shopware’s core (see the s_core_locales database table).

Like mentioned before, snippets require a name and a namespace. The above .ini file contains only one snippet, but more can be added, as long as they all have a common namespace. The file’s location in the filesystem must match the snippet’s namespace. So, to match the snippet declaration in our template file, this .ini file must be in the following location:

ThemeFolder
 _private
 snippets
 frontend
 listing
 box_article.ini

The ThemeFolder will depend on where you are developing. You might have to create the _private folder manually.

Developing with snippets

Manually generating .ini files, however, is a task you don’t have to do. You can just define the snippets in your template files and, when you navigate to that page on your browser, Shopware can automatically create those snippets for you.

array(
 'db' => array(
 // your database configuration
),
 'snippet' => array(
 'readFromDb' => true,
 'writeToDb' => false,
 'readFromIni' => true,
 'writeToIni' => true,
 'showSnippetPlaceholder' => true //introduced in Shopware 5.0.2
),
)

The above settings illustrate an example development configuration. In this scenario, snippets are read but not written into the database, but are read and written into the .ini files automatically. So, suppose you just added a new snippet to your template, and refresh the browser page to see your result. As the template is rendered, Shopware will look for that snippet in the database. As it’s new, it won’t find it, but it also won’t write it, as writeToDb is set to false.

Next, it will look for it in your .ini files. It also won’t find it, but it will write it. If the particular .ini file for that namespace doesn’t exist already, it will be created automatically, and the snippet will be added to the file automatically.

As you no longer have to worry about creating .ini files, you can focus on developing your templates. When you are finished with that, should check your .ini files, and manually add translations for other languages, or make sure all your snippets are there.

A few things to keep in mind when using this approach: - Snippet values are only written automatically to the .ini file when the snippet is first detected in the frontend. Further changes to the snippet’s default value will not be written to the file automatically - Only snippets rendered in the frontend will be written automatically to .ini files (or database, if writeToDb is true). - Snippet are written to the current locale of your shop. You can duplicate those sections manually for creating translations. - Changes made to snippets in the backend are not saved to .ini files - The automatically generated .ini files might not be so inside your plugin folder, but directly in Shopware’s root folder. However, the internal folder structure is the same, so you can just move that folder inside your plugin once you are finished - Enabling writeToIni will write ALL missing snippets to .ini files. This means that if, for some reason, a missing snippet that does not belong to your template file is detected, it will also be written to .ini file, and might get mixed with your new snippets. For this reason it’s recommended that you carefully review your .ini files once you are finished developing your plugin/theme. - If your template files have snippets with an empty default value, they will also be written to db/.ini file as an empty string. The showSnippetPlaceholder only affects the rendered value, not the value that is written into storage.

Note: Shopware 5 includes some CLI commands that can prove useful when handling snippets. Please refer to the related section for more details.

Snippets during plugin installation

If you plugin/theme uses snippets, they should be placed inside the corresponding folder in your plugin/theme. If that is done correctly, when the plugin is installed in another Shopware installation, those snippets will be automatically imported from the .ini file into the database. This minimizes the number of file reads in production environments, maximizing performance.

Snippets during installation/production phases

[image: Backend snippet administration]
Backend snippet administration

The snippet administration allows you to translate the existing snippets directly from the Shopware 5 backend. You have the ability to add content to the snippets individually for every existing subshop, even if multiple subshops share a common language. You can also configure your shop to inherit another shop’s custom translations in the shop tab on basic settings

Snippet CLI commands

Shopware includes some CLI tools that you can use to better manage your snippets, and are particularly useful if you are handling a large amount of snippets at once. For instructions on how to use Shopware CLI commands, please refer to this page.

sw:snippets:find:missing

This command expects a locale key (e.g. en_GB, see all possible value in s_core_locales) as a required argument. For that locale, it will check the snippets database table to find unique snippets (defined by a unique name-namespace pair) that are defined for other locales but not the given one. Those snippets are then exported into the ´snippets´ folder of your Shopware installation (by default, it doesn’t exist in Shopware 5 installations, and it will be automatically created if needed) as .ini files. If the target file already exists, the new snippets will be appended to it.

The command accepts two optional arguments:

	target: Folder to which the snippets will be written. Defaults to snippets

	fallback: By default, the exported snippets are left with empty values. If you provide a locale key in this argument, the snippets are exported with the value of the matching snippet in the fallback language (if available).

This command is useful in many situations. It can be used to find missing translations for your plugin’s snippets, or to export complete snippet sets, if you wish to create a new translation plugin for Shopware.

sw:snippets:remove

This command requires a folder argument. It scans that folder (and subfolders) for .ini snippet files and, for those found, removes them from the database.

sw:snippets:to:db

This command loads all snippets from the .ini files inside thesnippets folder in your Shopware installation path into the database.

	include-plugins: If provided, the command will also search all your active plugins for a snippets folder, and import those too.

	force: By default, if a snippet being imported already exists in the database, it will not be overwritten. Use the force argument to change this behaviour

	source: use this argument if your wish to import snippets from a folder other that then snippets folder in the root of your Shopware installation.

sw:snippets:to:ini

Exports snippets from the database into .ini files. It requires a ´locale´ argument (e.g. en_GB, see all possible value in s_core_locales) indicating which snippet set to export. If a file for a given namespace already exists, the snippets will be appended to the existing content.

	target: Folder to which the snippets will be written. Defaults to snippets

sw:snippets:to:sql

Loads snippets from the snippets folder of your Shopware installation and creates a SQL file that, when executed, will insert those snippets into the s_core_snippets table. It requires a file argument containing the desired location of the SQL file.

	force: By default, if the target file already exists, it will not be overwritten. Use this argument to change this behaviour.

	include-default-plugins: Set this option to also export snippets included in Shopware’s core plugins

	include-plugins: If set, active plugin snippets will also be exported.

	update: By default, the generated SQL script only performs inserts. If the update option is provided, it will also handle update scenarios when duplicates are found. If the existing database snippet has dirty = 0, the value will be overwritten. If dirty is 1, it’s not changed. Please note that, for a large number of snippets, enabling update support will make the SQL statements significantly slower to execute upon importing.

This quick tip shows off the best way on how to use CSS and JavaScript files for your custom themes, in order to enable them to be automatically compressed by the Shopware theme compiler. To use this feature you have to place your CSS and JavaScript files inside your theme directory under the subfolders frontend/_public. This would be an example directory structure:

ExampleTheme
└── frontend
 └── _public
 └── src
 ├── css
 │ └── example.css
 └── js
 └── example.js

As the second step you will have to define the CSS or JavaScript files you would like to use inside your custom theme. This can be done by adding an array to your Theme.php file that contains the specific file paths, as the following examples shows:

Add CSS files:

protected $css = array(
 'src/css/example.css'
);

Add JavaScript files:

protected $javascript = array(
 'src/js/example.js'
);

Note: When you add JavaScript with the <code>$javascript</code> array you will also have access to jQuery.
If you'd like further information about creating your own jQuery plugins you can take a look at our Guide: Getting started with the statemanager and the jQuery plugin base

After clearing the theme cache the changes should be displayed in the storefront.

layout: default title: Embedding external resources github_link: designers-guide/external-resources/index.md indexed: true —

In Shopware 5 we created the possibility to embed external resources directly via the backend. In the theme configuration of the new Shopware Responsive theme you will find two input fields for additional CSS and JavaScript files. This enables you to simply add external resources like for example a web font or a tracking code to your theme.

[image: Theme configuration - external resources]
Theme configuration - external resources

To embed the resource add the code with the necessary HTML tags, <link> for CSS and <script> for JavaScript, into the corresponding configuration field. Additional CSS files will be included before the normal theme stylesheets so your styles can also use the external resources.

Of course this is just a very simple way to include other resources. As a designer or developer you should use either the new compiler or the common way to embed resources in you theme.

layout: default title: Custom templates for category and detail pages github_link: designers-guide/custom-templates/index.md indexed: true —

Table of contents

	Custom category templates

	Custom detail page templates

Custom category templates

To be more flexible when building different product pages you are able to create your own custom category templates. Your template will be selectable in the backend category settings and can be configured for every single category.

[image: Custom category templates]
Custom category templates

First create a new template file in the frontend/listing/ directory of your theme. This is your base file for your new template. If you don’t want to rebuild everything from scratch you can use the {extends} method to extend the original category template und just edit the necessary blocks. See the Smarty 101 guide for more information about extending templates.

 To make your new file selectable in the category settings you have to add it in the basic settings of your shop.

You go to Configuration -> Basic settings -> Frontend -> Categories -> Available template categories.

[image: Custom category templates]
Custom category templates

You can add your template by extending the string with the name of your new template file and the name for the label. In our example it is ;custom_listing.tpl:My custom template. After saving you have to clear the configuration cache to make your new template option appear in the category settings.

Custom detail page templates

You cannot only create custom templates for category, but also for detail pages. It works quite the same way.

[image: Custom detail page templates]
Custom detail page templates

First you create the corresponding template file in the frontend/detail/ directory of your theme. To also make this file selectable in the product settings we have to add it in the basic settings. Go to Configuration -> Basic settings -> Frontend -> Shopping cart / item details -> Available templates for detail page

[image: Custom detail page templates]
Custom detail page templates

Add the template file and the name for the label to the string in the input field. In our example it is ;custom_detail.tpl:My custom page. After clearing the configuration cache you can select your new template in the product settings.

Introduction

Within the new Shopware 5 Responsive Theme we provide you with many reusable components for easier template and plugin development. With our default components you can create buttons, panels, alert messages and other UI elements by using simple HTML code snippets. You can use these snippets within your smarty template *.tpl files.

We implemented a parent child class naming in our LESS structure that helps you to identify template components. A quick example: The panel class is a parent class and all related child classes are prefixed with a panel-- e.g. panel--title or panel--body. If you are already familiar with frontend frameworks like Bootstrap you will understand Shopware’s components even more easily. This guide gives you a quick overview of the usage of the most important components. If you want further information take a look at our Shopware 5 styletile.

Quick examples

	Buttons

	Panels

	Icons

	Alert messages

	Modal boxes

	Product boxes

	Product sliders

Buttons

Creates a styled button which can have different appearances.

Button
Primary Button
Secondary Button

More styling options by adding classes to the btn element:

	is--large: larger button height

	is--small: smaller button height

	is--full: button with 100% width

	is--center: button with centered text

	is--icon-left button with icon on the left

	is--icon-right button with icon on the right

Note: The button component can also be used on the HTML <button> element.

Panels

Creates a content Panel which can have different appearances.

<div class="panel has--border is--rounded">
 <div class="panel--title is--underline">
 Panel Title
 </div>
 <div class="panel--body is--wide">
 Panel Content
 </div>
</div>

More styling options by adding classes to the panel element:

	has--border: Panel with border

	is--rounded: Panel with rounded corners

Icons

Creates a webfont icon.

<i class="icon--basket"></i>

The Shopware 5 Responsive theme provides you with a large amount of webfont icons. You can find a list of all Icons in our Shopware 5 styletile.

You can also use icons within buttons by adding the positioning classes from the Buttons example:

 <i class="icon--account"></i> Primary button with icon on the left

Alert messages

Creates a styled alert message box.

<div class="alert is--success is--rounded">
 <div class="alert--icon">
 <!-- Alert message icon -->
 <i class="icon--element icon--check"></i>
 </div>
 <div class="alert--content">
 Alert message text
 </div>
</div>

Display different alert message types by adding classes to the alert element:

	is--success: Success message (green)

	is--error: Error message (red)

	is--info: Info message (blue)

	is--warning: Warning message (yellow)

Note: At least one of those four types is required for proper appearance.

Modal boxes

Creates an absolute and centered positioned modal box window.

<div class="js--modal sizing--content" style="width: 600px; height: auto; display: block; opacity: 1;">
 <div class="header">
 <div class="title">
 Modal box title
 </div>
 </div>
 <div class="content">
 Modal box content
 </div>
 <!-- Modal box close button -->
 <div class="btn icon--cross is--small btn--grey modal--close">
 </div>
</div>

Note: The inline styles are generated by the jquery.modal.js jQuery Plugin.

Product boxes

Creates a product box for product listings.

<div class="product--box box--basic">
 <div class="box--content is--rounded">
 <div class="product--info">

 <!-- Article images -->

 <div class="product--rating-container">
 <!-- Product rating stars -->
 </div>

 Product title

 <div class="product--description">
 Product description
 </div>

 <div class="product--price-info">
 <div class="price--unit">
 <!-- Optional unit price -->
 </div>
 <div class="product--price">

 35,00 €

 </div>
 </div>

 <div class="product--actions">
 <!-- Product action links e.g. product compare -->
 </div>
 </div>
 </div>
</div>

Product box types:

	box--basic: Default product box

	box--big-image: Product box with focus on a larger image

	box--minimal: Smaller product box with less information

Product sliders

Creates a section with multiple product boxes which can be slide by direction arrows.

<div class="product-slider" data-product-slider="true">

 <!-- Product slider direction arrows -->

 <div class="product-slider--container is--horizontal">

 <div class="product-slider--item">
 <!-- Include of the product box -->
 </div>

 </div>
</div>

The product slider can be both oriented in horizontal and vertical display mode by adding classes to the product-slider--container and product-slider--arrow elements:

	is--horizontal: Horizontal slider alignment

	is--vertical: Vertical slider alignment

Note: The jQuery plugin which actually slides the product boxes is called by the data-product-slider="true" attribute. For further modifications like e.g. animation speed take a look at the options in the jquery.product-slider.js jQuery Plugin.

Complete component overview

You can find the complete overview of the Responsive theme components in the Shopware 5 styletile.

Introduction

This guide explains how to prepare your custom themes, wrap them in plugins that can be installed with the Shopware plugin manager and make them ready to be downloaded or purchased from the Shopware Community Store.

To publish your plugins in the Shopware Community Store, you need to register your own developer prefix in your Shopware account. The result of the theme that was created in the getting-started guide will be used as an example of this tutorial.

[image: community store image]
community store image

Plugin structure

The plugin directory has to have a specific structure in order to work inside Shopware 5. The plugin folder name has to match the Shopware plugin naming pattern, which consists of the developer prefix and the plugin name. In this example the plugin directory name is “SwagTutorialTheme” (Swag as the prefix for shopware AG, TutorialTheme as the plugin name).

[developer prefix][plugin name]

Themes in the Shopware Community Store have to be wrapped inside plugins in order to be installable with the plugin manager. The plugin requires a Bootstrap.php file in the root directory and the custom theme, that was previously created. It has to be located inside the Themes/Frontend folder (just as it would be inside the normal Shopware installation).

Attention: the folder and file names are case sensitive.

Plugin directory

SwagTutorialTheme
 ├── Themes
 │ ├──Frontend
 │ │ ├──TutorialTheme
 │ │ │ ├── preview.png
 │ │ │ ├── Theme.php
 │ │ │ └── frontend
 └── Bootstrap.php

Creating the plugin

The only requirements the Bootstrap.php file has, in this case, are the plugin label (name that is displayed in the plugin manager later on) and the version number. So, with that in mind, you would create the file and add the 2 required functions to it. Because the TutorialTheme folder is located inside the Themes/Frontend, the plugin automatically detects its content.

Bootstrap.php

<?php
class Shopware_Plugins_Frontend_SwagTutorialTheme_Bootstrap extends Shopware_Components_Plugin_Bootstrap
{
 /**Returns a marketing friendly name of the plugin.*/
 public function getLabel()
 {
 return 'Your custom theme as a plugin';
 }

 /**Returns the version of the plugin.*/
 public function getVersion()
 {
 return '1.0.0';
 }
}

The plugin should now be displayed inside the Shopware plugin manager, where it can be installed. Once the plugin is enabled, the theme will be available and selectable in the theme manager, along with all other existing themes. If this is the case, the plugin is ready to be published in the Shopware Community Store. [image: Inside the plugin manager]

Result

The example plugin as download:

	Final store-ready plugin - Download

Introduction

Shopware 5 includes the new, ready to us